Fates of methane from different lake habitats: Connecting whole-lake budgets and CH$_4$ emissions

David Bastviken, Jonathan J. Cole, Michael L. Pace, and Matthew C. Van de Bogert

Received 27 September 2007; revised 3 February 2008; accepted 28 February 2008; published 24 May 2008.

Methane (CH$_4$) represents a major product of organic matter decomposition in lakes. Once produced in the sediments, CH$_4$ can be either oxidized or emitted as a greenhouse gas to the atmosphere. Lakes represent an important source of atmospheric CH$_4$, but the relative magnitudes of the internal pathways that lead to CH$_4$ emissions are not yet clear. We quantified internal cycling and methane emissions in three lakes during summer stratification. These methane budgets included: sediment release of CH$_4$ at different depths; water column transport patterns and methane oxidation; methane storage in the water column; and methane emissions to the atmosphere by diffusion and ebullition. The contribution of CH$_4$ carbon, via oxidation by methanotrophic bacteria, to pelagic food webs was also estimated. Despite the very low concentration of CH$_4$ in surface waters, shallow, epilimnetic sediments were major contributors of CH$_4$ to the atmosphere. While 51–80% of the CH$_4$ produced in deep sediments was oxidized in the water column, most of the CH$_4$ released from shallow sediment escaped oxidation and reached the atmosphere. Epilimnetic sediments accounted for 100% of CH$_4$ emitted during summer stratification, and 14–76% considering the release of CH$_4$ stored in deep water layers during lake circulation after the stratification period; diffusive emission accounted for 26–48% and ebullition the remainder. These results indicate that it is important to address transport rates of CH$_4$ from the shallow sediment along with the production-consumption processes when trying to understand methane dynamics and the regulation of lake methane emissions.