A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems

James J. Elser & R. Patrick Hassett

Department of Zoology, Arizona State University, Tempe, Arizona 85287–1501, USA

In the 35 years since A. C. Redfield’s classic paper\(^1\), the use of elemental ratios has become widespread in marine and freshwater phytoplankton studies\(^2,3\). But nutrient ratios have only recently been studied elsewhere in pelagic ecosystems, such as the producer–consumer interface\(^4,5\). Here we report the results of the first study, to our knowledge, of N:P ratios in pelagic producers and consumers (phytoplankton and zooplankton) in lacustrine and marine habitats. The N:P ratio of phytoplankton was higher in lakes than in marine sites; however, N:P ratios were higher in marine zooplankton than in freshwater zooplankton. The elemental imbalance of the phytoplankton–zooplankton interaction (N:P\(_{\text{food}}\)–N:P\(_{\text{consumers}}\)) in lakes was positive and exceeded the negative imbalance in marine sites; thus P-deficient food may limit zooplankton growth in lakes but not in oceans. Stoichiometric calculations\(^6\) indicated that consumer-driven nutrient recycling ratios in lakes may be 4–6 times higher than in marine systems. Consistent with this difference, phytoplankton P-limitation was more prevalent in lakes than in marine sites. Thus, the ecological stoichiometry of the zooplankton–phytoplankton interaction differs qualitatively in freshwater and marine ecosystems.