Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes

J. A. Rusak
Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3

N. D. Yan
Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3; Dorset Environmental Science Centre, Ontario Ministry of the Environment, Dorset, Ontario, Canada P0A 1E0

K. M. Somers
Dorset Environmental Science Centre, Ontario Ministry of the Environment, Dorset, Ontario, Canada P0A 1E0

K. L. Cottingham and F. Micheli
National Center for Ecological Analysis and Synthesis, Santa Barbara, California 93101-3351

S. R. Carpenter
Center for Limnology, University of Wisconsin—Madison, Madison, Wisconsin 53706-1492

T. M. Frost
Trout Lake Station, University of Wisconsin—Madison, Boulder Junction, Wisconsin 54512

M. J. Paterson
Freshwater Institute, Department of Fisheries and Oceans, Winnipeg, Manitoba, Canada R3T 2N6

D. J. McQueen
Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3

Abstract

We quantified the spatial and temporal variability of crustacean zooplankton abundance at annual time steps with 261 lake-years of data from 22 lakes in three regions of central North America. None of these lakes had been experimentally manipulated. Using a nested three-way analysis of variance, we apportioned variance among years,

1 Current address: Department of Biology, University of Regina, Regina, Saskatchewan, Canada S4S0A2.
2 Current address: Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576.
3 Current address: Hopkins Marine Station, Stanford University, Pacific Grove, California 93950.
4 Deceased.

Acknowledgments

This manuscript is dedicated to Thomas Frost, who was instrumental in initiating and executing this project. We gratefully acknowledge the heroic efforts of the many individuals that have been involved in the collection and cataloguing of the reference data sets herein. P. Soranno, P. Montiz, S. Kasian were very helpful in providing details of sampling protocols and limnological data. Comments by M. Futter, T. Kraitz, R. Havens, and two anonymous reviewers improved the manuscript. This project began as a result of the first, second, and fourth through eighth authors' participation in the Community Dynamics Working Group supported by the National Center for Ecological Analysis and Synthesis, a center funded by the National Science Foundation (NSF), the University of California at Santa Barbara, and the State of California. We thank all the participants of this working group for their ideas and encouragement, especially J. Fischer, J. Klag, and A. Ivex. The Dorset portion of this work was supported by the Ontario Ministry of the Environment, Wisconsin Little Rock and LTER studies were supported by the U.S. NSF Long-term Ecological Research program and the Environmental Protection Agency. The Trophic Cascade Project was supported by the U.S. NSF Ecosystem Studies Program. J. Rusak was supported by a Natural Sciences and Engineering Research Council (NSERC) Postgraduate Scholarship, a York University President’s Dissertation Scholarship, and NSERC operating grants to N. Yan and D. McQueen.
regions, lakes, and their interactions for 10 functional groups and 4 larger taxonomic aggregates. We proposed that relative variation in the abundance of zooplankton would be greatest among regions and lakes and least among years. We also explored how variability differed among functional groups and changed with taxonomic aggregation. Spatial sources of variation dominated the analysis, but a large interaction between lakes and years indicated that time cannot be ignored. Regional variation was half that found among lakes. Relative variance components differed widely among functional groups, which indicates that species will differ in their response to environmental controls and sensitivity to perturbation. Total explained variation also differed widely among zooplankton and decreased with increasing aggregation of taxa. Whether choosing ecological indicators or designing experiments and monitoring programs, these results clearly show that large-scale temporal and spatial variability will be an important consideration.