Controls of $\delta^{13}$C-DIC in lakes: Geochemistry, lake metabolism, and morphometry

Darren L. Bade and Stephen R. Carpenter
Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706

Jonathan J. Cole
Institute of Ecosystem Studies, P.O. Box AB, Millbrook, New York 12545

Paul C. Hanson
Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706

Raymond H. Hesslein
Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada

Abstract

We investigated $\delta^{13}$carbon (C)–dissolved inorganic carbon (DIC) values in 72 lakes from diverse regions using literature data as well as new measurements for 32 lakes. $\delta^{13}$C-DIC varied broadly among lakes from $-31$ to $+2.6\%$. This variation of surface-water $\delta^{13}$C-DIC among lakes is greater than the seasonal variation within most lakes. Several statistical models account for a large portion of the interlake variation and indicate that geochemical (e.g., DIC, pH, alkalinity) and morphometric (area) variables are important, whereas biological (e.g., gross primary productivity [GPP], respiration [R], chlorophyll a) variables are generally not significant. A process-based model including gas exchange with the atmosphere, inorganic carbon speciation, and ecosystem metabolism was also constructed. The model provides a reasonable fit to the data for lakes, in which respiration exceeded GPP (heterotrophic lakes; 75% of lakes sampled). Lakes for which GPP exceeded respiration (autotrophic) were not fit well by the process-based model. The data and models indicate that metabolism creates substantial variation in $\delta^{13}$C-DIC around the potential $\delta^{13}$C-DIC that is set by geochemical factors of the watershed.